Table 1. Overview of diseases for which CBD may have therapeutic benefits taken from Pisanti et al (2017) [69]

Disease	Effects
Alzheimer's disease	Antinflammatory, antioxidant, antiapoptotic in in vitro and in vivo models
	of $A\beta$ -evoked neuroinflammatory and neurodegenerative responses.
Parkinson's disease	Attenuation of the dopaminergic impairment in vivo; neuroprotection;
	improvement of psychiatric rating and reduction of agitation, nightmare
	and aggressive behaviour in patients.
Multiple sclerosis	Improved signs of EAE in mice, antinflammatory and immunomodulatory
	properties.
Huntington's	Neuroprotective and antioxidant in mice transgenic models; no significant
disease	clinically important differences in patients.
Hypoxia-ischemia	Short term neuroprotective effects; inhibition of excitotoxicity, oxidative
injury	stress and inflammation in vitro and in rodent models.
Pain	Analgesic effect in patients with neuropathic pain resistant to other
	treatments.
Psychosis	Attenuation of the behavioural and glial changes in animal models of
	schizophrenia; anti-psychotic properties on ketamine-induced symptoms
Anxiety	Reduction of muscular tension, restlessness, fatigue, problems in
16.25.5	concentration, improvement of social interactions in rodent models of
	anxiety and stress; reduced social anxiety in patients.
Depression	Anti-depressant effect in genetic rodent model of depression.
Cancer	Antiproliferative and anti-invasive actions in a large range of cancer types;
	induction of autophagy-mediated cancer cell death; chemopreventive
	effects.
Nausea	Suppression of nausea and conditioned gaping in rats
Inflammatory	Antinflammatory properties in several in vitro and in vivo models;
diseases	inhibition of inflammatory cytokines and pathways.
Rheumatoid	Inhibition of TNF-α in an animal model
arthritis	
Infection	Activity against methicillin-resistant Staphylococcus aureus
Inflammatory	Inhibition of macrophage recruitment and TNF-α secretion in vivo and ex
bowel and Crohn's	vivo; reduction in disease activity index in Crohn's patients.
diseases	
Cardiovascular	Reduced infarct size through anti-oxidant and anti-inflammatory
diseases	properties in vitro and in vivo.
Diabetic	Attenuation of fibrosis and myocardial dysfunction
complications	